Como 5 π /8 radianes es un ángulo del segundo cuadrante, $\cos(5\pi$ /8) < 0 y $\sin(5\pi$ /8) > 0. En consecuencia se toma la raíz cuadrada negativa como valor del coseno,

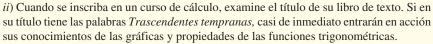
$$\cos\left(\frac{5\pi}{8}\right) = -\sqrt{\frac{2-\sqrt{2}}{4}} = -\frac{\sqrt{2-\sqrt{2}}}{2},$$

y la raíz cuadrada positiva como valor del seno

$$\operatorname{sen}\left(\frac{5\pi}{8}\right) = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}.$$

Notas del aula

i) ¿Se deben memorizar todas las identidades que se presentaron en esta sección? Pregúntelo a su profesor, pero en opinión de los autores, cuando menos debería memorizar las fórmulas (1) a (8), (14), (15) y las dos fórmulas en (18).



iii) Como se describió en las secciones 2.9 y 3.7, los temas principales de estudio en el cálculo son *derivadas* e *integrales* de funciones. Las identidades de suma (4) y (7) se usan para determinar las derivadas de sen x y $\cos x$, vea la sección 4.11. Las identidades tienen utilidad especial en el cálculo integral. Reemplazar un radical por una función trigonométrica, como se ilustra en el ejemplo 1 de esta sección, es una técnica normal para evaluar algunos tipos de integrales. También, para evaluar integrales de $\cos^2 x$ y $\sin^2 x$ se usarían las fórmulas de mitad de ángulo, en la forma que se presenta en (18):

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$
 y $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.

En algún momento de sus estudios de cálculo integral se le pedirá evaluar integrales de productos como

$$sen 2x sen 5x$$
 y $sen 10x cos 4x$.

Una forma de hacerlo es usar las fórmulas de suma o diferencia para formar una identidad que convierta esos productos ya sea en una suma de senos o en una suma de cosenos. Vea los problemas 66 a 70 en los ejercicios 7.4.

9.4 Ejercicios Las respuestas a los problemas impares seleccionados comienzan en la página RESP-24.

En los problemas 1 a 8 proceda como en el ejemplo 1 y formule la expresión como expresión trigonométrica sin radicales, haciendo la sustitución indicada. Suponga que a > 0.

$$1. \ \sqrt{a^2 - x^2}, \quad x = a\cos\theta, \quad 0 \le \theta \le \pi$$

2.
$$\sqrt{a^2 + x^2}$$
, $x = a \tan \theta$, $-\pi/2 < \theta < \pi/2$

3.
$$\sqrt{x^2 - a^2}$$
, $x = a \sec \theta$, $0 \le \theta < \pi/2$

4.
$$\sqrt{16-25x^2}$$
, $x = \frac{4}{5} \operatorname{sen} \theta$, $-\pi/2 \le \theta \le \pi/2$

5.
$$\frac{x}{\sqrt{9-x^2}}$$
, $x = 3 \sin \theta$, $-\pi/2 < \theta < \pi/2$

6.
$$\frac{\sqrt{x^2 - 3}}{x^2}$$
, $x = \sqrt{3}\sec\theta$, $0 < \theta < \pi/2$

7.
$$\frac{1}{\sqrt{7+x^2}}$$
, $x = \sqrt{7}\tan\theta$, $-\pi/2 < \theta < \pi/2$

8.
$$\frac{\sqrt{5-x^2}}{x}$$
, $x = \sqrt{5}\cos\theta$, $0 \le \theta \le \pi$

En los problemas 9 a 30, use una fórmula de suma o diferencia para determinar el valor exacto de la expresión indicada.

9.
$$\cos \frac{\pi}{12}$$

10.
$$\sin \frac{\pi}{12}$$

13.
$$\sin \frac{7\pi}{12}$$

14.
$$\cos \frac{11\pi}{12}$$

15.
$$\tan \frac{5\pi}{12}$$

$$16. \cos\left(-\frac{5\pi}{12}\right)$$

17.
$$\operatorname{sen}\left(-\frac{\pi}{12}\right)$$

18.
$$\tan \frac{11\pi}{12}$$

19.
$$\sin \frac{11\pi}{12}$$

20.
$$\tan \frac{7\pi}{12}$$

29.
$$\cos \frac{13\pi}{12}$$

30.
$$\tan \frac{17\pi}{12}$$

En los problemas 31 a 34, use una fórmula de ángulo doble para escribir la expresión dada como una sola función trigonométrica del doble del ángulo.

31.
$$2\cos\beta \sin\beta$$

32.
$$\cos^2 2t - \sin^2 2t$$

33.
$$1 - 2 \operatorname{sen}^2 \frac{\pi}{5}$$

34.
$$2\cos^2\left(\frac{19}{2}x\right) - 1$$

En los problemas 35 a 40, use la información presentada para determinar a) cos 2x, b) sen 2x y c) tan 2x.

35. sen
$$x = \sqrt{2}/3$$
, $\pi/2 < x < \pi$

36.
$$\cos x = \sqrt{3}/5$$
, $3\pi/2 < x < 2\pi$

37.
$$\tan x = \frac{1}{2}, \quad \pi < x < 3\pi/2$$

38.
$$\csc x = -3$$
, $\pi < x < 3\pi/2$

39. sec
$$x = -\frac{13}{5}$$
, $\pi/2 < x < \pi$

40. cot
$$x = \frac{4}{3}$$
, $0 < x < \pi/2$

En los problemas 41 a 48, use la fórmula de mitad de ángulo para determinar el valor exacto de la expresión dada.

41.
$$\cos{(\pi/12)}$$

42. sen
$$(\pi/8)$$

43. sen
$$(3\pi/8)$$

44.
$$\tan (\pi/12)$$

47.
$$\csc(13\pi/12)$$

48. sec
$$(-3\pi/8)$$

En los problemas 49 a 54 use la información indicada para determinar a) $\cos(x/2)$, b) $\sin(x/2)$ y c) $\tan(x/2)$.

49. sen
$$t = \frac{12}{13}$$
, $\pi/2 < t < \pi$

50.
$$\cos t = \frac{4}{5}, \quad 3\pi/2 < t < 2\pi$$

51.
$$\tan x = 2$$
, $\pi < x < 3\pi/2$

52.
$$\csc x = 9$$
, $0^{\circ} < x < \pi/2$

53.
$$\sec x = \frac{3}{2}$$
, $0^{\circ} < x < 90^{\circ}$

54. cot
$$x = -\frac{1}{4}$$
, $90^{\circ} < x < 180^{\circ}$

- **55.** Si $P(x_1)$ y $P(x_2)$ son puntos del cuadrante II en el lado terminal de los ángulos x_1 y x_2 , respectivamente, y $\cos x_1 = -\frac{1}{3}$ y sen $x_2 = \frac{2}{3}$, determine \boldsymbol{a}) sen $(x_1 + x_2)$, \boldsymbol{b}) $\cos (x_1 + x_2)$, \boldsymbol{c}) sen $(x_1 x_2)$ y \boldsymbol{d}) $\cos (x_1 x_2)$.
- **56.** Si x_1 es un ángulo del cuadrante II, x_2 es un ángulo del cuadrante III, sen $x_1 = \frac{8}{17}$, y tan $x_2 = \frac{3}{4}$, determine \boldsymbol{a}) sen $(x_1 + x_2)$, \boldsymbol{b}) sen $(x_1 x_2)$, \boldsymbol{c}) cos $(x_1 + x_2)$ y \boldsymbol{d}) cos $(x_1 x_2)$.

■ Aplicaciones diversas

57. Número de Mach La relación de la velocidad de un avión con la velocidad del sonido se llama número de Mach, *M*,